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A system of differential equations is proposed for mass and heat transfer in capillary-porous bodies. The
principal thermophysical characteristics of mass and heat exchange in relation to building materials and
structures are discussed.

Building materials are moist capillary-porous bodies, in which heart transfer is inseparably associated with mass
transfer of moisture (vapor and liquid) and air. Therefore heat transfer calculations relating to building materials must
take mass transfer into account. These calculations call for extensive use of machine computation and the application of
generalized variable methods (similiarity theory). It is therefore necessary to have a sufficiently rigorous mathematical
formulation of the problem and a clear understanding of the corresponding thermophysical characteristics.

Physical characteristics of the system. Consider a capillary-porous body with a lyophilic skeleton, i.e., one in
which the walls of the capillaries and pores sorb gas, vapor and liquid; an osmotic-diffusion bond may then be formed
between the substance sorbed and the skeleton.

A system of this kind differs substantially from the dispersed media models examined in classical filtration theory.

The substance bound by the capillary-porous skeleton may be in the form of a liquid, vapor, inert gas, solid, or
supercooled liquid, depending on the conditions of mass and heat transfer, The freezing point of a liquid varies over a
wide range, depending on the type of bond between substance and skeleton. There is therefore always a certain amount
of supercooled liquid (water) in capillary-porous bodies at temperatures below 0°C.

It should also be noted that in most cases the pores and capillaries are not completely full of liquid or ice, but
partly filled with a vapor-gas mixture. To simplify the analysis we shall assume the liquid to be water without any dis-
solved substance. The presence of dissolved substances modifies the mass transfer processes and causes a number of other
effects.

The main parameter of a capillary-porous material is its moisture content u, or the sum of the relative concentra-
tions of the i-th bound substance (i = 1, 2, 3, 4),
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If shrinkage of the body is neglected, the volume concentration of the skeleton will equal the density of the abso-
lutely dry material (¥ = %). If the skeleton walls are slightly hydrophilic, and changes in the density of the liquid of the
monomolecular adsorbed layer are neglected, then the amount of moisture in the physico-mechanical bond (capillary
moisture, ice, vapor, and air) may be determined from the relation

(2)

where bj is the degree of filling of pores and capillaries, or the ratio of the volume of the i-th bound substance to the
pore volume*;
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is the volume porosity of the body; fy () is the differential pore distribution curve. The relation Eb,- =1 holds

L.
for bj. It should be noted that (2) will not be valid for the moisture of the physico-chemical bond (wj = wi'; uj = u).

The equality w; = wj, uj = u}, and hence (2), can be assumed only for typical capillary-porous materials with a small hy-
groscopic moisture content.

For the molar (hydrodynamic) motion of moisture (liquid, gas or vapor) through the pores that occurs in filtration
processes the flow density of the i-th substance is

*In filtration theory b; is called the saturation.
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where IIg is the surface porosity of the body, or the ratio of the area of all the pores (holes) to the area of the cross sec-
tion in a direction perpendicular to the vector jj mol.
"max

For a polycapillary-porous body [1s == 5 fg(r)dr, where fg(r) is the differential distribution curve of the surface
To
porisity of the body with respect to the radius of the pores. For homogeneous bodies the surface porosity Ilg is approxi-
mately equal to the volume porosity Hy(lly = IIg = 1),

Strictly speaking, the by in (3) is different from the bj in (2). However, when Ily = Ilg = II, b; will denote the de-
gree of filling of the pores of the i-th bound substance, Thus we may write

Jimo =T1p; byw,. 4)
Relation (4) may be used to determine the flow density of the capillary moisture in a monocapillary-porous body. In that

case wj = Wacap, Where wpcap is the linear velocity of the liquid in a monocapillary-porous material under the action of
the capillary forces.

The following circumstance is also important. Under ordinary conditions, when the pressure of the moist air in the
pores of the material is only slighﬂy different from barometric, the mass of the air and vapor in the pores is negligibly
small compared to that of the liquid or ice. Naturally, this presupposes that the material is in equilibrium with the sur-
rounding moist air, i.e., its moisture content differs from zero. According to Posnov's calculations, under normal condi-
tions for materials of maximum porosity (brick, wood, etc.) the mass of moist air in the pores of the material is about
107°% of the mass of liquid corresponding to the equilibrium moisture content. Therefore the total moisture content of
the material u may be regarded as equal to the moisture content of liquid up and ice ug:

u=2u‘=u2+u3. (5)

We shall use this relation in calculating sources of bound matter due to phase transitions.

Differential equations of mass and heat transfer, From the law of conservation of mass of bound matter we obtain
the differential equation of mass transfer

FIORY) . . '
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where the relation 2 I; =0 holds for I,
i
Neglecting shrinkage (Y = ¥ = const) and making use of (4), we get:

ou, .
Yo a; = — div (ja + o, 0w;) + 1. (N
We obtain the differential equation of heat transfer from the equation of internal energy transfer
oT . ‘ . :
Yo Py = — divj, + Ehi[i — E (]zdif T, biwi) c;vT, (8)
i i

where c is the reduced specific heat of the body* (c = ¢y + 2 ciui); h; is the specific enthaipy of the i-th bound sub-
i
stance (¢; = dhi/dT); j q is the heat flux density due to Fourier-law thermal conduction (jq = —AVT).

Equations (7) and (8) form the most general system of differential equations of mass and heat transfer in capillary-
porous bodies, from which the equations for a number of special cases may be obtained: the filtration equation, the equa-
tions of moisture and heat transfer in monocapillary-porous materials, and so on. Vapor diffusion in capillary-porous
bodies is determined by the moisture content and temperature gradients: '

J1dif = @YoV 4 + aﬁh YoV 7. (9

The flow of capillary moisture is proportional to the gradient of capillary potential, which in turn can be expressed
in terms of the moisture content and temperature gradients, i.e., the motion of capillary moisture can be considered as
capillary diffusion.

*For a solid the specific heat at constant volume cy is usually assumed to be equal to the specific heat at constant

pressure, cp, i.e., Cp = CV =C.
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Consequently, in a porous materiat with a polycapillary structure, diffusion of osmotically bound liquid and capil-
lary diffusion may be represented by a single vector — the flow of diffusion and capillary moisture:

J2ai6= Az YoV 4 + al,vowT. (10)

The sources of bound matter I; (i = 1, 2, 3, 4) may be expressed as follows, When there are no chemical transitions,
Is = 0 (absolutely dry air is considered an inert gas). When liquid turns into ice, the ice source Iy may be determined in
terms of the ice ratio €;.., the ratio of mass of ice to mass of liquid and ice [&jq¢ = ug/u = ug/(up + ug)k

Eice Ouy ou
I —sjce o ice¥o gt
Here it is supposed that the mass of vapor in the pores is negligibly small compared with the mass of liquid and ice [u;<
& (ug + ug)]. Source Ip (I = ~I;) may be determined from (8) when i = 1, by putting 9u,/d7 = 0 in accordance with the

above reasoning, i.e.,

(11)

[3=—[2=

Iy=—1I; = — div (jugt + Jimor)- (12)

If transfer of moisture proceeds by means of diffusion (molecular and capillary), then the system of differential equations
for mass and heat transfer will have the form

ou, .
Yo 1‘ = div(ay; vovu +al,yovT) + 1, (13)
aT . .
Vos— = divOVT) + Yrd— D9 T, (14)
Summing over all i in (13), we obtain
ou
= i . T .
Py Zidlv (@mvu+al,vT). (15)

The value of heat transfer due to diffusion of enthalpy 2 Jiaic; VT may be neglected. Then, using the expressions for
i

sources Ij, we obtain the system of differential equations of mass and heat transfer in the final form

du

Jdt

= div(ky yu) +div(kivT), (16)

¢ = div (ky, v T) + div (k;, v u). (17)

In the zonal calculation system, coefficients kyy, ki, Kig Ky may be assumed constant in each separate interval
Mu and AT, Then the system of Egs. (16), and (17) may be written:

ou =kuvV:u+ kv T, (16%)
Jrt
T
g =Ry V' T + R V2. (17
T

Here kyp = 1/c(Kpp), kg = 1/c(khyp) and the coefficients ki and kp; are not equal. The coefficients kij (i, = 1, 2) are de-
termined by the state of the moisture in the material.

Then for the system { = 1,2

ky =@, = (Qm + ), ki=al =a,s,

’1g Iyg « T2
koo =0+ Gy —, ka= a,fu“‘*“ == (mi 01—6“
C c

for the system i = 2,3

105



kll == am2 (1 —eice), k12 = (1 - eice) arTr‘l2’

r Toz |
k22=a+(1"“eice)a;12_czi’ ko= (1 —2jce) ame P

for the system i = 1,3

I3 Is
by =y, ke = a,,T“, kyy = a + a,al ——C y By = ap ’—‘C .

Thermophysical characteristics. The system of Eqs. (16) and (17) describes mass and heat transfer by diffusion in a
capillary~porous body. The transfer coefficients entering into the system as thermophysical characteristics are as follows:
moisture diffusion coefficient (vapor and liquid) a,, or the sum of the diffusion coefficients of moisture in vapor amy
and liquid amg from (@m = @my + Amg), the thermal diffusivity or coefficient of diffusion of heat (energy) ¢, the coeffi-
cient of thermal diffusion of moisture (vapor and liquid) am, or the sum of the coefficients of thermal diffusion of moist-
wre in vapor @y and liquid a;fm from (@ = afy; + a%z). In addition, the following thermodynamic properties appear:
the specific heat of the material c¢ and the heat of phase transitionr,

Consequently, to describe mass and heat transfer in capillary-porous materials, the following thermophysical prop-
erties must be known: @y, Qo a;fm, al’%z, a, candr, i.e., seven given values for each material. Instead of these
seven characteristics, the following seven may be taken: a3, Gmg 1. 8, A, candr, where X = acy, §; and Sy are the
thermogradient coefficients, or the ratio of the coefficients of thermal diffusion to the coefficients of diffusion of vapor
and liquid moisture (8; = a;rm lamy; 83 = a%z/amz). The relation between the diffusion coefficientsand thermogradient
coefficients is
al, _ al +aly _ Gmdit aped
An A1 + n2 A + Oino
The thermophysical properties dm1, @mga, 6, 8, A, ¢ and r are determined by experiment, The coefficients of moisture
diffusion am are usually determined by drying samples of moist material in an atmosphere of moist air, and the coeffi-
cients of liquid diffusion amy by immersing samples of moist material in water. The experimental determination of the
thermogradient coefficient 6 is not diffucult; it is numerically equal to the fall in moisture content for a temperature
drop of one degree with no moisture transfer (in the steady state), i.e., § = (Au/AT)j=o.

(18)

™
Lo gp—

The determination of the coefficients &; and & presents some difficulty. In the hygroscopic region, however, the
equality &; = & = & may be considered valid; this is conditioned by thermodynamic and molecular equilibrium between
liquid and vapor inside the moist material,

In drying processes, which involve typical unsteady mass and heat transfer, the coefficient of thermal diffusion of
vapor ayy is replaced by the phase transition coefficient &, which enters into the expression for the liquid drain (or
source)

. ou
Iy = — [ =¢ev, . (19)
o

This relation is derived from the balance equation of conservation of mass of liquid in the moist material. The co-
efficient ¢ is equal to the ratio of change of liquid due to evaporation or condensation du; to the overall change of moist
ure content of the material in an infinitely small volume du, i.e., € = duj/du.

The coefficient € varies from zero to unity (0 < & < 1), Relation (19) is valid only for unsteady mass transfer. For
steady mass transfer, (19) gives an indeterminancy (du/dT = 0, € = ), which when expanded leads to the usual expres-
sion for a moisture source.,

Using the differential equations

O divi 4l 2 o —divi,— divy, (20)
ot - ot
we obtain
(12)u=const = — (11)u==const= €Yq = divjz = —div jl- 2D
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For unsteady mass transfer, putting du,/d7 = 0, we have from (19) and (20)

e = div jAdivi; - divjp). (22)

For the one~dimensional problem (div = 8/8x) the phase transition coefficient is numerically equal to the ratio of vapor
flux to the total flux of vapor and liquid

Ezljl‘/(]jll‘I—ljZ,), (23)

in which it is assumed that the coefficient ¢ is a constant.

If (19) is substituted for I, = =1y in the system of differential Eqs. (13) and (14), Eqs. (16) and (17) are obtained, in
which the coefficients kij (i,j =1, 2) are determined by*

a Q0 0
kll = am = m? y k12 = m2 2 = am a! (24)
1 —e ] —=
r ~ r o
k22 =a+€£am0, k21=5—-—2—£'0£1m. (25)
C c

Thus, mass and heat transfer in a capillary-porous body will be described by the system of differential Egs. (16) and (17)
along with the thermophysical characteristics am, @, 8, €, c and r, i.e., six given values for the given moist material.

Introducing the coefficient ¢ thus reduces the number of thermophysical characteristics from seven to six. In the
hygroscopic region this is equivalent to assuming the equality 8 = 5, = 5. This system of characteristics is less general
than the first, however, because it is valid only for unsteady mass and heat transfer.

Boundary conditions. Buildings are essentially systems of contiguous moist capillary-porous bodies. We may assume
approximately that at the surfaces of contact between the moist bodies equality of the moisture jk and heat qi fluxes ob-
tains, together with equality of moisture and heat transfer potentials (8, T), i.e.,

= %= et (26)

bprs =0, Tp=Tpyy, (27

where 0 is the moisture transfer potential, measured in degrees of mass transfer (DM), and the subscript k denotes the k-th
layer of moist material, in contact with the (k + 1)-th layer.

There is a relation between the moisture transfer potential 6 and the moisture content, analogous to that between
enthalpy (heat content) and temperature, i.e.,
ou (28)
Cp = s
006. /1

where ¢, is the specific isothermal mass capacity (moisture capacity) of the body.

The thermodynamic basis of the moisture transfer potential has been given in [4], which also gives tables of specif-
ic mass capacity for a large number of moist materials. Methods have now been developed for experimentally determin-
ing the moisture transfer potential for various moist materials.

Mass and heat transfer take place at the boundary between moist air and the surface of the material. The interac-
tion of the surface of the moist material and the air is usually described by boundary conditions of the third kind. Recent
work by the author has shown that boundary conditions of the third kind are incorrect for unsteady mass and heat transfer,
since the mass and heat transfer coefficients are functions of time. Boundary conditions of the third kind are valid only
for steady mass and heat transfer,

“Expression (23) can be used as a basis for deriving the moisture source, as in [1]. It follows from (23) that lidl =
= (/1 — €)|jal. Let us denote the unit vectors along j; and jp by 1pg and lp,, respectively. We may then write j; = lpljl;:
j2 = lpaljal. From the differential equation of moisture transfer (20) we obtain Yo(duM7) = —div j; — div jo = —div[1nlj,[1—
— div [1n21j2|] = ~div(e/l — a)lmljzl — div jp. If we put 1p; = 1y, (one-dimensional problem or equality of thermogradient
coefficients &; = §,) and assume ¢ independent of the coordinates (zonal system of calculation), we get Yo(du/d7)==(c/1-€)
div j; — div jp = —div j5 + eY(O0/OT). Consequently, the moisture source Iy = ey udT).
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The outside walls of buildings involve problems of unsteady mass and heat transfer, and it is therefore necessary to
use boundary conditions of the second kind for a more accurate representation of the actual transfer process between the
surface of the material and the surrounding medium.

—a, (Vs —al (vT)s +is (1) =0, (29)

—hVT)s +qs (1) —ria(@nevu +al,vT)s =0, (30)

where the subscript s denotes the surface of the material, qg(7) is the variable heat flux at the surface, or the sum of the
radiant and convective heat fluxes, and ji(1) is the variable moisture flux at the surface.

Therefore, to describe the interrelated mass and heat transfer between moist building materials and the surrounding
medium, the following thermophysical characteristics must be known: transfer coefficients @, N, am, ams, %¢m> a;fm, the
specific heat and mass capacity ¢ and ¢, and the specific heat of phase transition, When ice is present, the ice ratio
&ce must also be known. Interaction with the surrounding medium is described by the dimensionless Kirpichev numbers

Kig(x) = _q_s_(i)_l_ and Ki,, (1) = ds @b , (31)
A Tc An Yo U,

where 7 is a characteristic dimension; T, is a characteristic temperature: and ue is the equilibrium moisture content, In

most cases Kiq('r) and Kig,(7) are periodic functions of time and are determined by the parameters of the surrounding

medium (temperature, humidity, and velocity of the air, and the intensity of radiative heat transfer).

Finally, it should be noted that in certain special cases the system of differential Eqs. (16), (17) may be simpli-
fied. For example, in the region of the moisture state the system may be written as:

._alf_zamVZu_!_az;VZT’ (32)
Jr

T o+ D2ar, e, (39)
d= c ™

The last equation is the usual Fourier heat conduction equation with the thermal diffusivity aeq = a + (rlz/c)arTm. When
filtration mass transfer is present, determined by the relation jg = —k¢Vp, where ky is the coefficient of filtration moist -
ure transfer, the system of differential equations of heat and mass transfer will have the form

—;ﬁ—=div(amvu+atflvT+afvp), (34)
T
0 . '
Yo . div (kv p) + I, (35)
oT :
CYo = div(AVT) + rialy + Zkfi()i vTvp, (36)

i=1
where ag is the convective diffusion coefficient (af = kffegYo); cf is the capacity coefficient of moist air in the porous ma-
terial, determined by the relation d(u; + uy) = cfdp. Here we neglect enthalpy transfer due to diffusion of moisture.

This system of Eqs. (34)-(36) may also be simplified and reduced to a system of differential equations of the fol-
lowing type™:

dx

=Y divkave)s i, i=1, 2, 3, S
!

where 83=1, 9,=T, 83=D.

The coefficients kij are functions of u and T, and system of differential Eqs. (37) is solved for given thermophysi-
cal characteristics using computers, Therefore the first task of building heat physics is to develop experimental methods
for determining the thermophysical characteristics of moist building materials as a function of the moisture content and
temperature.

*A detailed derivation of this system is given in monograph [2], together with a number of solutions for various
boundary conditions.
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NOTATION

w; — volume concentration of i~th bound substance; y — volume concentration of skeleton of material, or the ratio
of mass of skeleton to volume of material; p; — density of i-th state of moisture; u — total moisture content of material;
wj — average linear velocity of molar (filtration) motion of i-th substance; 7 — time; T — temperature; jjgif — diffusion
current density of i~th bound substance; 1; — source strength of i-th bound substance due to phase wransitions; X — thermal
conductivity of moist material; ¢ — specific heat of material; r — specific heat of phase transition; a;y — diffusion coeffi-
cient of moisture (vapor and liquid) in moist material; ¢y — diffusivity of water vapor (diffusivity of vapor in moist ma-
terial); amy — diffusivity of liquid water (diffusivity of liquid in moist material); am; and am, — respectively, coeffi-
cients of thermal diffusion of vapor and liquid in moist material; p — total pressure inside moist material. Subscripts:

1 — water vapor; 2 — liquid; 3 — moisture in third state (ice); 4 — inert gas (dry air); 0 ~ skeleton,
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